Direct Observation of Two Different Types of TMM Intermediates in the Photoinduced Electron-Transfer **Degenerate Methylenecyclopropane Rearrangement**

Hiroshi Ikeda,[†] Tatsuo Nakamura,[†] Tsutomu Miyashi,^{*,†} Joshua L. Goodman,[‡] Kimio Akiyama,[§] Shozo Tero-Kubota,[§] Abdelaziz Houmam,^{\perp} and Danial D. M. Wayner^{\perp}

> Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan Department of Chemistry, University of Rochester Rochester, New York 14627 Institute for Chemical Reaction Science Tohoku University, Sendai 980-8577, Japan Steacie Institute for Molecular Sciences National Research Council of Canada Ottawa, Ontario, Canada K1A 0R6

Received October 31, 1997

We previously reported that 4,4-dideuterio-2,2-bis(4-methoxyphenyl)-1-methylenecyclopropane $(d_2-1)^1$ undergoes the degenerate methylenecyclopropane (MCP) rearrangement, involving the bisected trimethylenemethane (TMM) cation radical intermediate $(d_2-2^{*+})^4$ under the triplet-sensitized photoinduced electron-transfer (PET) conditions (Chart 1). We now report further mechanistic studies based on nanosecond laser flash photolysis (LFP), EPR spectroscopy, and time-resolved photoacoustic calorimetry (PAC) that support a new, energetically favorable mechanism that requires both TMM cation radical d_2 -2^{•+} and TMM d_2 -2 as key intermediates in the rearrangement sequence.

Table 1 shows photostationary ratios $(d_2-1:d_2-1')$ of the degenerate MCP rearrangement of d_2 -1, yields of dioxolane (3) in oxygenation of **1** and transient absorption maxima (λ_{max}) observed in LFP of 1 under the 9,10-dicyanoanthracene (DCA)-, 1,2,4,5-tetracyanobenzene (TCNB)-, or N-methylquinolinium tetrafluoroborate (NMQ⁺BF₄⁻)-sensitized conditions. A mechanistic connection among rearrangement, oxygenation, and transient absorption provides evidence for the participation of TMM cation radical 2^{•+} and TMM 2 in the degenerate rearrangement sequence. Relevant results were obtained under the TCNB- and NMO+- BF_4 -sensitized conditions (entries 3-6). Oxygenation of 1 to give $3^{1,5}$ and the degenerate rearrangement of d_2 -1 occur efficiently under the sensitized conditions in which two transient absorptions at $\lambda_{\text{max}} = 351$ and 500 nm were observed by LFP (entry 3 or 5). Interestingly, under the sensitized conditions in which only the transient absorption at $\lambda_{max} = 354$ nm was observed the degenerate rearrangement occurs efficiently but not oxygenation (entry 4). Conversely, oxygenation proceeds rapidly but not rearrangement under the sensitized conditions in which the transient, $\lambda_{max} = 498$ nm was predominant (entry 6). These results suggest that the air-sensitive,⁶ longer wavelength transient is a precursor for oxygenation product 3, whereas the shorter wavelength transient

Scheme 1

species is a precursor for rearrangement product 1. The identities of the 350 and 500 nm transients may be inferred from the absorption spectra of cation 4⁺ (484 nm in CH₃CN and 499 nm in $CH_2Cl_2^7$) and radical 4 (349 nm in CH_3CN and 352 nm in $CH_2Cl_2{}^8).$ Thus, the λ_{max} around at 500 and 350 nm can be unambiguously assigned to the 1,1-bis(4-methoxyphenyl)ethyl cation moiety of the bisected TMM cation radical 2^{++} and the 1.1-bis(4-methoxyphenyl)ethyl radical moiety of the bisected TMM $2.^9$ The most reasonable process to form 2 is back electron transfer $(BET)^{11}$ from the sensitizer anion radical to $2^{\bullet+}$ within a contact or solvent separated ion radical pair [2.+/sens..].

The most reasonable mechanism, based on the spectroscopic evidence and the product analysis, that accounts for the participation of two different types of TMM intermediates is a cation radical cleavage-diradical cyclization (CRCL-DRCY) mechanism shown in Scheme 1. Cation radical d_2 -2^{•+} formed by the CRCL of d_2 -1^{•+} or d_2 -1^{•+} does not directly recyclize to d_2 -1^{•+} and d_2 -1'*+ but undergoes BET to form d_2 -2. The degenerate MCP rearrangement is then completed by the DRCY of d_2 -2 to d_2 -1 and d_2 -1'. This mechanism is supported by time-resolved PAC.¹² Using PAC for the 1-DCA-biphenyl (BP) system, $\Delta H^{irp}([2^{\bullet+}/$ DCA^{•–}]) was determined to be 37.0 ± 0.8 kcal/mol. This result indicates that recyclization of d_2 -2^{•+} to d_2 -1^{•+} and d_2 -1'^{•+} is at least 16 kcal/mol endothermic because $\Delta H^{irp}([1^{++}/DCA^{-}])$ is calculated to be 53.0 kcal/mol.^{13,15} A MNDO UHF calculation¹⁶ also supports the suggestion that the recyclization of d_2 -2^{•+} at the cation radical stage is significantly endothermic: at this level

Graduate School of Science, Tohoku University.

[‡] University of Rochester

[§] Institute for Chemical Reaction Science, Tohoku University.

 ¹ National Research Council of Canada.
 (1) Takahashi, Y.; Miyashi, T.; Mukai, T. J. Am. Chem. Soc. 1983, 105, 6511–6513. For the thermal degenerate MCP rearrangement of the diphenyl derivative and reviews for the MCP rearrangement, see refs 2 and 3, respectively.

⁽²⁾ Gilbert, J. C.; Butler, J. R. J. Am. Chem. Soc. 1970, 92, 2168-2169.

⁽³⁾ Berson, J. A. In Rearrangements in Ground and Excited States; Mayo, P. de, Ed.; A.cademic: New York, 1980; Vol. 1; pp 311–390. Berson, J. A. In *Diradicals*; Borden, W. T., Ed.; Wiley: New York, 1982; pp 151–194. Gajewski, J. J. In Organic Chemistry, A Series of Monographs 44, Hydrocarbon Thermal Isomerizations; Wasserman, H. H., Ed.; Academic: New

⁽⁴⁾ Miyashi, T.; Takahashi, Y.; Mukai, T.; Roth, H. D.; Schilling, M. L.
(4) Miyashi, T.; Takahashi, Y.; Mukai, T.; Roth, H. D.; Schilling, M. L.
(5) Miyashi, T.; Kamata, M.; Mukai, T. J. Am. Chem. Soc. 1986, 108, 2755 (2757, arXiv) 2729, 2729.

^{2755-2757,} and 1987, 109, 2780-2788.

⁽⁶⁾ Under the DCA-BP-cosensitized conditions in CH₃CN in the presence of oxygen, LFP of 1 exhibited a new transient absorption with λ_{max} at 518 nm. The observed transient species may be assigned to a peroxy cation radical, a precursor of dioxolane 3.

⁽⁷⁾ Heublein, G.; Helbig, M. Tetrahedron 1974, 30, 2533-2536.

⁽⁸⁾ Radical 4° was generated by photolysis of bis(4-methoxyphenyl)methane with di*tert*-butyl peroxide (0.5 M) in CH₃CN and CH₂Cl₂.

⁽⁹⁾ Intersystem crossing (ISC) of diradicals with small spin-orbit coupling (b) filtersystem crossing (BC) of unadreas with small spin or coupling interaction¹⁰ proceeds generally with small Arrhenius A factor. From the Arrhenius plot of the decay rate constants of TMM **2** in the TCNB-sensitized LFP between 266.7 and 299.5 K in CH₂Cl₂, an activation energy (E_a) was determined to be 2.9 kcal/mol and small A factor ($10^{7.2}$ s⁻¹) was obtained. If the observed small A factor may be explained by ISC and large structural change from triplet TMM 2 to singlet 1, TMM 2 observed in LFP is triplet (10) Salem, L.; Rowland, C. Angew. Chem., Int. Ed. Engl. **1972**, 11, 92–

^{111.}

⁽¹¹⁾ Du, P.; Borden, W. T. J. Am. Chem. Soc. 1987, 109, 5330-5336.

⁽¹²⁾ Rudzki, J. E.; Goodman, J. L.; Peters, K. S. J. Am. Chem. Soc. 1985, 107, 7849-7854. Herman, M. S.; Goodman, J. L. J. Am. Chem. Soc. 1989, 111, 1849–1854. Peters, K. S. In Kinetics and Spectroscopy of Carbenes and *Biradicals*; Platz, M. S., Ed.; Plenum: New York, 1900; pp 37–49. Griller, D.; Wayner, D. D. M. *Pure Appl. Chem.* **1989**, *61*, 717–724.

Table 1. Results of the Degenerate MCP Rearrangement of d_2 -1,^{*a*} Oxygenation of 1,^{*b*} and LFP of 1^{*c*} under Various PET Conditions

entry	conditions	<i>d</i> ₂ - 1 : <i>d</i> ₂ - 1' (time/h)	yield of 3/% (time/min)	$\lambda_{\rm max}(2)/{\rm nm}$	$\lambda_{max}(2^{\bullet+})/nm$	$\Delta OD(2^{+})/\Delta OD(2)^d$
1	DCA/CH ₃ CN	58:42 (4.5)	100 (15)	е	f	
2	DCA-BP/CH ₃ CN	slow	100 (15)	е	$49\dot{4}^{g}$	
3	TCNB/CH ₃ CN	54:46 (4.5)	100 (20)	351	500	1.3
4	TCNB/CH ₂ Cl ₂	56:44 (3)	4 (30)	354	f	~ 0
5	TCNB-BP/CH ₂ Cl ₂	56:44 (2)	96 (15)	354	508	2
6	NMQ ⁺ BF ₄ ⁻ -toluene/CH ₃ CN	slow	100 (5)	350^{h}	498^{h}	>10

^a Under N₂. $[d_2-1] = 100$ mM. Deuterated solvent and cosensitizer were used. ^b Under O₂. [1] = 10 mM. ^c Under N₂. [1] = 1 mM. ^d Ratio of Δ OD of 2⁺⁺ to that of 2 at 200 ns after excitation. ^e Not observable. ^f No transient absorption was observed. ^g See footnote 6. ^h Under air.

Figure 1. CIDEP spectrum (left) and its simulation (right) of 2^{+} . An asterisk, *, represents an emission due to chloranil anion radical.

2^{•+} is located 18 kcal/mol lower in energy than 1^{•+}. In contrast, BET from DCA^{•–} to d_2 -2^{•+} is estimated to be about 20.5 kcal/ mol exothermic using the oxidation potential of 4• ($E^{ox}_{1/2} = -$ 0.06 V vs SCE in CH₃CN) as determined by photomodulation voltammetry.¹⁸ Thus the highly exothermic BET presumably occurs rapidly¹⁹ to form d_2 -2, which is 16.5 kcal/mol higher in energy than either d_2 -1 or d_2 -1'.

The participation of two types of TMM intermediates in the degenerate MCP rearrangement of d_2 -1 was further directly confirmed by EPR spectroscopy using chloranil or anthraquinone as sensitizers.¹ Figure 1 (left) shows the time-resolved EPR spectrum of 2^{+} observed at a delay time of 1 μ s after the laser excitation of chloranil (10 mM) with 1 (50 mM) in DMSO²² at ambient temperature. The hyperfine structure (hfs) was analyzed with two splitting constants corresponding to $2^{\bullet+}$ [$a_{\rm H}$ (2H) = 1.38 mT, $a_{\rm H}$ (2H) = 1.44 mT, and g = 2.0026]. The observed spectrum was well reproduced by simulation, in which both the triplet (E) and radical pair mechanisms (E/A)²³ are taken into account [Figure 1 (right)]. Since the hfs constants and g-value of 2^{+} are close to those of the neutral allyl radical,²⁴ it follows that the unpaired electron is mainly distributed over the allyl part and the positive charge is localized on the bis(4-methoxyphenyl)methyl moiety. The structure of bisected TMM cation radical $2^{\bullet+}$ elucidated by time-resolved EPR well agrees with that from LFP and CIDNP.4

 $\overline{(13) \Delta H^{\text{irp}}([1^{+}/\text{sens.}^-]) = 23.06 [E^{\text{ox}_{1/2}}(1) - E^{\text{red}_{1/2}}(\text{sens.})] - C (\text{in kcal}/\text{mol}), where E^{\text{ox}_{1/2}}(1) = +1.35 \text{ V vs SCE}, E^{\text{red}_{1/2}}(\text{DCA}) = -0.95 \text{ V}, \text{ and} E^{\text{red}_{1/2}}(\text{NMQ}^+\text{PF}_6^-) = -0.90 \text{ V in CH}_3\text{CN} \text{ and the Coulomb term } (C) \text{ was ignored after Farid's example.}^{14}$

(14) Gould, I. R.; Ege, D.; Moser, J. E.; Farid, S. J. Am. Chem. Soc. 1990, 112, 4290-4301.

(15) For the $1-NMQ^+PF_6^-$ -toluene system in CH₃CN, $\Delta H^{irp}([2^{+}/NMQ^+$ PF_{6}^{-1}) was determined to 635.0 ± 0.7 kcal/mol by PAC, and thus endothermicity for the *cation radical cyclization* of d_2 -2⁺⁺ is suggested to be about 17 kcal/mol endothermic based on $\Delta H^{irp}([1^{++}/NMQ^{+}PF_6^{-}]))$, 51.9 kcal/ mol.13

(16) Similar energy difference for the 2,2-diphenyl derivative was previously calculated to be 24.0 kcal/mol17 by MNDO UHF

(17) Takahashi, O.; Morihashi, K.; Kikuchi, O. Tetrahedron Lett. 1990, 31, 5175-5178.

(18) Wayner, D. D. M.; McPhee, D. J.; Griller, D. J. Am. Chem. Soc. 1988, 110.132-137

110, 132-137.
(19) According to theoretical equations²⁰ and reported parameters by Farid¹⁴ and Kikuchi,²¹ a rate constant for the BET in [2⁺⁺/DCA⁺⁻] at 20 °C was estimated to be 3.0 × 10⁸ and 1.0 × 10¹⁰ s⁻¹, respectively, in CH₃CN.
(20) Miller, J. R.; Beitz, J. V.; Huddleston, R. K. J. Am. Chem. Soc. 1984, 106, 5057-5068. Siders, P.; Marcus, R. A. J. Am. Chem. Soc. 1981, 103, 741-747 and 748-752. Van Duyne, R. P.; Fischer, S. F. Chem. Phys. 1974, 5, 183-197. Ulstrup, J.; Jortner, J. J. Chem. Phys. 1975, 63, 4358-4368.
(21) Niwa, T.: Kikuchi, K.: Matsubita, N.: Havashi, M.: Katagiri, T.:

(21) Niwa, T.; Kikuchi, K.; Matsushita, N.; Hayashi, M.; Katagiri, T.; Takahashi, Y.; Miyashi, T. J. Phys. Chem. **1993**, *97*, 11960–11964.

(22) The degenerate MCP rearrangement of d_2 -1 similarly occurs in DMSOd₆ under the DCA-sensitized conditions.

(23) McLauchlan, K. A. In Modern Pulsed and Continuous-Wave Electron Spin Resonance; Keva, L., Bowman, M. K., Eds.; Wiley: New York, 1990; pp 285-363. (24) Fessenden, R. W.; Schuler, R. H. J. Chem. Phys. **1963**, 39, 2147-

2195. Krusic, P. J.; Meakin, P.; Smart, B. E., J. Am. Chem. Soc. 1974, 96, 6211-6213.

On the other hand, irradiation of anthraquinone with 1 in a CH₂Cl₂ matrix at 20 K provided a characteristic EPR spectrum of randomly oriented triplet species ascribed to 2 along with $2^{\bullet+}$. In addition to the $|\Delta M_s| = 1$ transition signals, a weak $|\Delta M_s| =$ 2 transition was observed at 0.1673 T. The zero-field splitting parameters were estimated to be |D/hc| = 0.0116 and |E/hc| =0.0038 cm⁻¹ from the spectrum. The |D/hc| value is small²⁵ compared with those of other phenyl-substituted TMM derivatives.²⁷ The triplet EPR signal of 2 persisted at cryogenic temperature, and the Curie plot of the $|\Delta M_s| = 2$ transition line intensity gave a straight line between 4.2 and 50 K, indicating that the ground state of 2 is triplet as usual TMMs. It is noteworthy that while the ground state of the parent TMM²⁸ is triplet with a planar structure in accord with calculation,^{28b} the structure of TMM 2 is bisected regardless of its triplet ground state. Since 2 is formed by BET without significant conformational change, the bisected structure²⁹ of 2 is most likely due to that of 2^{•+} formed by the least motion ring cleavage⁴ of 1^{•+} which requires only the rotation of the methylene group but not of the bulkier diarylmethylene group of 1^{•+}.

The proposed rearrangement sequence including a diradicalforming BET process³⁰ was also suggested to similar PET MCP rearrangements of 2-aryl-1-methylenecyclopropane, 2,2-diaryl-1-methylenespiropentane,³² and 1-cyclopropylidene-2,2-diarylcyclopropane.³² The results herein provide the first observation of the interconversion of the relevant intermediates.

Acknowledgment. We gratefully acknowledge financial support from the Ministry of Education, Science, Sports and Culture (Grant-in-Aid for Scientific Research Nos. 08740560 and 09740536). We also thank Professor Y. Takahashi for valuable discussions.

Supporting Information Available: Transient absorption spectrum $(2^{\bullet+} \text{ and } 2)$, deconvolution fitting parameters for the PAC waveforms (1-DCA-BP), and the Curie plot for 2 (4 pages, print/PDF). See any current masthead page for ordering and Web access instructions.

JA973760R

(25) A small |D/hc| value of **2** can be ascribed to its bisected form. If diphenylmethylenecyclopentane-1,3-diyl is planar,^{26a} a decrease in |D/hc| value appendimentylenecyclopentane-1, 5-adyl is planar, a decrease in [*Dhc*] Value of 2 is probably caused by molecular distortion of 2 as exemplified by a series of biphenyl derivatives,^{26b} conjugated enones,^{26c} and conjugated TMMs,^{26d} (26) (a) Turro, N. J.; Mirbach, M. J.; Harrit, N.; Berson, J. A.; Platz, M. S.

J. Am. Chem. Soc. 1978, 100, 7653-7658. (b) Tanigaki, K.; Taguchi, N.; Yagi, M.; Higuchi, J. Bull. Chem. Soc. Jpn. **1989**, 62, 668–673. (c) Yamauchi, S.; Hirota, N.; Higuchi, J. J. Phys. Chem. **1988**, 92, 2129–2133. (d) Bushby, R. J.; Jarecki, C. Tetrahedron Lett. **1986**, 27, 2053–2056.

(27) Platz, M. S.; McBride, J. M.; Little, R. D.; Harrison, J. J.; Shaw, A.; Potter, S. E.; Berson, J. A. J. Am. Chem. Soc. 1976, 98, 5725–5726. Hirano, T.; Kumagai, T.; Miyashi, T.; Akiyama, K.; Ikegami, Y. J. Org. Chem. 1992, 57, 876–882. Dougherty, D. A. In Kinetics and Spectroscopy of Carbenes and Biradicals; Platz, M. S., Ed.; Plenum: New York, 1990; pp 117–142, and biradicals; Platz, M. S., Ed.; Plenum: New York, 1990; pp 117–142, and references therein.

(28) (a) Dowd, P. J. Am. Chem. Soc. 1966, 88, 2587-2589. (b) Dixon, D. A.; Dunning, Jr. T. H.; Eades, R. A.; Kleier, D. A. J. Am. Chem. Soc. 1981, 103, 2878-2880.

(29) A study on the multiplicity-structure relationship of phenyl-substituted TMM is in progress.

(30) Similar electron-transfer mechanism including a diradical-forming BET process is operative in the PET degenerate Cope rearrangement of 2,5-diaryl-1,5-hexadiene derivatives.³¹

(31) Ikeda, H.; Minegishi, T.; Abe, H.; Konno, A.; Goodman, J. L.; Miyashi, T. J. Am. Chem. Soc. 1998, 120, 87–95.
(32) Miyashi, T.; Takahashi, Y.; Ohaku, H.; Ikeda, H.; Morishima, S. Pure

Appl. Chem. 1991, 63, 223-230.